AutoEncoder by Forest

نویسندگان

  • Ji Feng
  • Zhi-Hua Zhou
چکیده

Auto-encoding is an important task which is typically realized by deep neural networks (DNNs) such as convolutional neural networks (CNN). In this paper, we propose EncoderForest (abbrv. eForest), the first tree ensemble based auto-encoder. We present a procedure for enabling forests to do backward reconstruction by utilizing the equivalent classes defined by decision paths of the trees, and demonstrate its usage in both supervised and unsupervised setting. Experiments show that, compared with DNN autoencoders, eForest is able to obtain lower reconstruction error with fast training speed, while the model itself is reusable and damage-tolerable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Denoising random forests

This paper proposes a novel type of random forests called a denoising random forests that are robust against noises contained in test samples. Such noise-corrupted samples cause serious damage to the estimation performances of random forests, since unexpected child nodes are often selected and the leaf nodes that the input sample reaches are sometimes far from those for a clean sample. Our main...

متن کامل

Learning Traffic as Images: A Deep Convolutional Neural Network for Large-Scale Transportation Network Speed Prediction

This paper proposes a convolutional neural network (CNN)-based method that learns traffic as images and predicts large-scale, network-wide traffic speed with a high accuracy. Spatiotemporal traffic dynamics are converted to images describing the time and space relations of traffic flow via a two-dimensional time-space matrix. A CNN is applied to the image following two consecutive steps: abstra...

متن کامل

Adaptive Multi-Column Deep Neural Networks with Application to Robust Image Denoising

Stacked sparse denoising autoencoders (SSDAs) have recently been shown to be successful at removing noise from corrupted images. However, like most denoising techniques, the SSDA is not robust to variation in noise types beyond what it has seen during training. To address this limitation, we present the adaptive multi-column stacked sparse denoising autoencoder (AMC-SSDA), a novel technique of ...

متن کامل

Denoising without access to clean data using a partitioned autoencoder

Training a denoising autoencoder neural network requires access to truly clean data, a requirement which is often impractical. To remedy this, we introduce a method to train an autoencoder using only noisy data, having examples with and without the signal class of interest. The autoencoder learns a partitioned representation of signal and noise, learning to reconstruct each separately. We illus...

متن کامل

Variational Autoencoder based Anomaly Detection using Reconstruction Probability

We propose an anomaly detection method using the reconstruction probability from the variational autoencoder. The reconstruction probability is a probabilistic measure that takes into account the variability of the distribution of variables. The reconstruction probability has a theoretical background making it a more principled and objective anomaly score than the reconstruction error, which is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.09018  شماره 

صفحات  -

تاریخ انتشار 2017